天才一秒记住【热天中文网】地址:https://www.rtzw.net
回到家里之后,周易简单的给夏雪说明了事情经过之后,
夏雪柔声道:
“每天我会按时把饭菜送到书房的,记得按时吃饭。”
周易说道:慻
“恩。”
决定闭关之后,周易一个人单独的呆在了书房。
之前的资料与文献,通通被牡丹投影了出来,
周易看着屏幕,一边用笔写写画画。
设α和b是整数,4a^3+27b^2≠0,
方程E:y2=x^3+ax+b叫作定义在有理数域Q上的一条椭圆曲线。
以E(Q)表示此曲线上的全部有理数点加上一个无穷远点,可以在其上引入一个加法运算使E(Q)为交换群。
慻
关于那椭圆曲线,周易随手写在了草稿纸之上,
“当初英国数学家Mordell于1922年证明了群E(Q)是有限生成的,从而有了直和分解E(Q)=E(Q)_f+E(Q)_t。”
一连数天,周易都没有进度,这让周易有些着急。
但是急也没用,有时候灵感不来,就是没有办法。
周易暂时放缓了一下进度,在院子里晒晒太阳。
时不时与梅纳德打个电话联系一下,探讨一下。
梅纳德也是数论领域的专家,拿过菲尔兹奖的人,慻
与他们多交流,也许能够碰撞出一点火花。
这一天,梅纳德在周易家院子里与周易说道:
“既然周易你现在有些卡壳,不如研究一下与BSD有联系的有一个古老的数论问题,叫作同余数(gruentnumber)问题。”
周易听完,带着一丝疑惑的语气说道:
“同余数问题!
?”
梅纳德说道:
“从这个问题入手,看能找到一丝灵感不?”
慻
随即梅纳德简单的介绍说道:
“一个正整数n叫做同余数,是指n是三边a,b,c均为有理数的直角三角形的面积。”
说到了这里,梅纳德拿起了一支粉笔在院子的黑板上写到,
“周教授,你看这里,”
【n=6和5为同余数,因为(a,b,c)可分别取(3,4,5)和(32,203,416)。
】
梅纳德写完继续说道:
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!