天才一秒记住【热天中文网】地址:https://www.rtzw.net
Chapter4Duality
banner"
>
&wodifferentviewsoflight,asapartidasawave,bothsightaheyhaveeaabledbothandiuralworldaanddesigeologies.Yettheyappeartobevastlydifferentintheirofwhatlightactuallyis.Oheparticlemodelviewslightasalotity,abuhatmovesalongawell-defiory.Ohewavemhtasadiffuseeingthroughspaotothemotionofsolidthings.Howthesetwopicturespossiblyrefertothesamething?ThisdilemmawasreizedearlyonbyHuygensandhisporaries,butthetwoviewsremaiensioivedessoflight,uhtury.
WhenMaxwelldevelopedhistheoryicfields,hewasabletousethistoexplaiiesoflightaswavemotionofthosefields,aster3.ThistriumphappearedtotheexperimentsofThomasYoungandAugusteFresnel(desChapter3)byprovidiionoftheerferenddiffra,thatdidwithiiclemodel.Yettheceptoftrajeaiillremairaordinarilypowerfuloheanalysisanddesignofopticalsystems.Sothere’saruceofthesetwopictures—adualismhysics—thatrequiressomesideration.Howtheybereciled?
Lookingattrajectain
IhturytheFrenPierredeFermatproposedaningeniousformulatioionthatwasverydifferentfromthatofSSnell’slawdealswiththegeofdirehtataweentareheray,defiioninwhichitistravellingtowardstheihepointatwhichithitstheisdirealteredbyanamountproportioiooftherefradicesofthetwomaterials.Itisonlythelocalpropertiesoftherayahatareimportant.Snell’slaliesateataloory,asiftherayis‘feeling’itswayalong,adjustiioentersaerface.
&’swasradicallydifferehatoneshoulddefioryiartingandendingpoints,asshowninFigure21.Hesuggestedthatthequestiontoaskis:whatisthepaththatthelighttakestotraversethespathetwopoints?Heproposedthatitshouldtakethepaththatmiimeofflightbetweewopoints.ThatthisgivesthesameanswerasSnellisremarkableandprofou’s‘pritime’suggeststhatthelightsiderstheoverallpictureofthesituation,andthatthenotionofarayisoakesintoatboththeinitialandfinalpositionsaionsaswellaseverythihetrastwiththelocalmodelofaparticlereaediateeelling.
21.Fermat’sofalightrayasapathofleasttimegthestartahetrajectory.Therayiweentwoopticalmediainwhichlightmovesatdiferentspeeds.
ThisideabytheGermannaturalphilottfriedWilhelmvonLeibniz,ton’sporaryandantagonist.LeibnizressedbytheholisticpictureoftheprocessdescribedbyFermat,aof‘optimization’thatitimplied:arayexploresthewholeofspadpicksjustthatpaththatwillmiraweenthespecifiedbegins.Hedevelopedthemathematicaltoolsforanalysingthisidea—thecalculusofvariations—bywhichtheeffectssmallatrajectorywouldhaveootraversethemodifiedtrajectorycouldbecalculated.LeibnizreizedtheimportahatFermat’sprincipleprovided:themovementoflightfromooanotherdefiimal’trajectory.
&akenwasLeibnizbythisizatioedittoateleologiciple:thattheworlditself,inallitsaspects,wasoimaltrajectorybetointandafinishingpoiradiherentinsuchaposition,liedoutsideoftherealmofsce,ooaireinhisnoveldide,whereLeibniz’sideasareputihloss,whoinsistsdisastersbothnaturalandmahelessevidehisisthe‘bestofallpossibleworlds’.
&ingwavesandrays
&heless,Leibniz’smathematicalideasprovedtobeveryfruitful.TheybytherenownedIrishmathematiWilliamRowanHamiltohtury.Heshowedformallyhowtheideaofawavebealliedtothatofaofparticles.Wavesbedefiheirwavelength,amplitude,andphase(seeFigure15).Particlesaredefiioionoftravel(seeFigure5),aionofparticlesbytheirdehehematagivenpositieofdireediainwhichthelightmovesarecharacterizedbytheirrefradices.Thisvaryacrossspaple,attheinterfaihereisasteptherefradexacrossthebouhet>
Hamiltoortantidlytherefradexspaparedwiththelengthofanopticalwave.Thatis,iftheiookplaascaleofclosetoawavelehewavecharacteroflightwasevident.Ifitvariedmoresmoothlyandveryslowlyiheparticlepictureprovidedaiohesimplerraypictureemergesfromthemoreplexioeredsituations.Theappearanceofhenomena,suchasdiffradinterference,othesizescalesofthewavelengthoflightauresinwhichitpropagatesaresimilar.Thusyouseediffrapatternsarisiheobjectthatthelighthitsisafewmidiameter,orhasaverysharpedge,suchasthedelicatestruabird’sfeather,orabutterflywing.Otherwise,asintheeraleoryprovidesasuffitdes,siiveindexisunifhouttheglassofthelensitself.
22.Hamilton’sideaofraysasgwavefronts-thusjoitionsoflight.
Further,HamiltoFermat’strajectoriesrelateddirectlytoapropertyofthewave—thewavefrohelotsatwhichthewavehasthesamephaseateatinspastanyouseetheripplesonthesurfaceofapoointoit,thecircularpatterhesewavefroheplathesurfacewheretheeaks’(hs)atagiveninstantoftime.Now,whatHamiltohatrayscouldbesideredasliihewavefrles,asshownihusgadjatwavefrontsbyawell-defiory.
Hamilton’s‘optialogy’
Thisremarkableresultsuggestedanotherprofoundilton’sso-called‘optialogy’.Whathehatthewell-knownformulatiohemotionandpositionofsolidbodiesofmatter—wasbasedorajectories.Theideathatthesemayalsobeiimal’hadbeensideredbyPierreLouisMaupertuisihtury.
&uishadformulatedawaytoevaluatetheoptimalvalueofaquantitycalledthe‘a’—essentiallythevelocityofthebodymultipliedbythedistamoves(asmass)—alorajectory.
&hattheainimalforanactualtrajectorybetweentwopoints,justasi’sargumentthatthetimetakenthtrayshouldbeminimal.Maupertuis’‘pria’isverysimilarioFermat’s‘pritime’.Indeed,LeonhardEuler,aSwissmathemati,showedhowtouseLeibniz’scalculustoderiveon’sfamousequationsofmotionfromMaupertuis’prihusEulerectedadesofatrajetermsofapartigitswaythroughitseooneinwhichthewholeofspathespecifiedstartingandfinishingpoihepath.
WhatHamiltondidwastofiioedthevariationsinasofasimpledesofthespeviroinwhioving.Aurnsouttohaveaverysimilarformtotheonehefoundfthetrajectoriesoflightrays(forwhiviroionisjusthowtherefradexgeswithpositioninthemedium).Sothereisahintofalatentahetrajectoriesofsolidobjedafictivewavefront:perhapsallbodiesmighthavebothparticle-liketrajedroperties?Ioion,andhiseponymousfun,turnsouttobeveryimportantinthinkingabouttheepiandinglight—quantummeics.
Unsolvedpuzzles
Thiswasbyheonlyhiunityforsce.Aboutthistime,towardstheehtury,lightstillofferedafewpuzzlesthatwereunexplaiermsmodelsofitsproperties,evenwiththerethatHamiltonhadprovided.Twoofthemostimportantofthesewere:thecolourofhotobjegtheSun),andthecolourofdifferentatomsinaflame.
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!