天才一秒记住【热天中文网】地址:https://www.rtzw.net
Chapter3Charagblackholes
banner"
>
InChapter1,weiheasssingularity,fravitationalcollapse,andsurroundedbyahorizon.ExamplesofsuchobjectsthatarenotspinningarecalledSchwarzschildblackholesandthistermspecifiotesblackholesthataren:inthejargon,theyhavenospin.Simplyput,theonlycharacteristicthatdistinguishesoneSchwarzschildblaaherthanlo)ishowmassiveitis.InChapter7wewilllearnhowblackholesgrowbutfornow,itwillsuffioseuyisthekeyihereisanyrotatiohepre-atter,hehecollapseoccurstherotationratewillinlesssomethingactstostopthathappening).ThisarisesduetoaremarkablephysiownastheservationofangularmomentuThislawisillustratedbyapirouettingskater:asshepullsherarmsinshespihesameway,ifthestarthatgivesrisetotheblackholeisgentlyrotatiheblackholethatitultimatelyformswillbespinningsignifidistermedaKerrblaoststarsareinfag,becausetheythemselvesarefravitationalcollapseofslmassivegasclouds.(Ifsuchagascloudhadeveofiohegcloudwillhavenularmomentum,aeroinglysmallervolumethefinalrotationofthecollapsedobjectmayid.)Thusweseethatrotation,moreonlycalledspiobeaprevalent,ifnotactuallyaubiquitous,characteristicforblackholesthathavejustformedfromtheatter.Wespinisasiableirophysicalblackholesasitisi-daypolitics(thoughiercaseitarisesfromsomethiheservationofangularmomentum!).
Wehaveasedphysicalparameter,thatularmomentum,isacharacteristicthatdistinguishesoneblaaasmassdoes.Thus,therearetwopropertiesofblackholesthatareimportanttokeepinmihebehaviourofblaassandspin.Inprihirdcharacteristicofblackholesthatmightberelevanttotheirbehaviour:electricalcharge.Thisisalsoaservedquantityinphysidtheforcesbetweericowicforces,haveanumberofresemblaogravitationalforce.Akeysimilarityisthatbothare(escales)examplesofinverse-squarelawsmeaningthat,iwomassiveobjects,asyoudoublethedistaseparatesthemfromohegravitatioheyexperieoaquarterinalvalue.Akeydifferewhilegravityisalwaysattractive,electrostaticchargesareoractive(whewobodiesareoppositelycharged,i.e.oiveaherisheyareatothertimesrepulsive(whenthebodieshaveesighpative,theyrepeleachother).Iftwedbodieshavethesametypee,theicrepulsioopreventthemg,evenifgravityistendingtoattracttheSowhilechargeprihirdpropertyofblackholesthatohopetomeasure,iyachargedblackholewouldberapidlyhesurroundiistherefoodoperationalassumptionthatthereareopropertiesofblackholesthatdistinguishonefromanother:massandspin.That'sall!
Now,youmightwoherblackholescouldbedistiheirighthavebeenformedfrasaheliumgascloud.Whyshoulditbethattheproveheatterthatgaverisetotheblackholeisn'tmahemeasurablepropertiesoftheblackholesubseque'sbeation'tgetoutoftheeventhhtisthemeansbywhiightbetrawehavealreadyseeniitotesihorizonofablackhole.Thusthechemipositiohatfellintotheblackholeoeffethepropertiesoftheblackholeasdetermiheoutside.Itwouldtothinkofgravityassomethiogetoutof'theblackhole.Theuedexistenceofagravitatioernaltotheblaethingthatislaiddowionoftheblackholeasspacetimebeesdistorted.Noinflueniheblackholegetheexterertheeventhorizonhasformed.
Blackholeshavenohair
Wheodesotherperson,adistinguishingcharacteristicthatisofteheirhair(forexample,strawberryblreyorchocolatebrown).Therearesometimesthenatureofpeople'shairasteortheirnationality.InformationaboutfurtherphysicalcharacteristicssuassIndex'mightprovideinformatio.Intrasttohumans,blackholesareehaveabsolutelynodistinguishingcharacteristicsotherthantheirmassandtheirspiihereasonsnotedabove).ThisiscapturediphraseBlackholeshavenohair',edbyJohoemphasizethatthereisnothingaboutablackholethatbearsahesprogenitorstar.Notitsshape,notitslumpislasmagitschemiposition.Nothing.Calsdoneby,amoheBelarusianphysicistYakovZel'dovistratedthatifaarysurfacecollapsedtoformablackhole,itseventhorizonwouldultimatelysettledowntoasmoothequilibriumshapehavingnolumpsorbumpsofanykind.So,ablaeverhasabadhairday!Theonlythingsyouowaboutitareitsmassandspin.
Spiy
&hemostremarkablefeatureofaspinningblackholeisthatthegravitationalfieldpullsobjedtheblackhole'saxisofrotatioowardsitstre.Thiseffectiscalledframedragging.AparticledroppedradiallyontoaKerrblackholewilla-radial(i.e.rotating)posofmotionasitfallsfreelyintheblackhole'sgravitationalfield.
Whatthismeansforatestpartigspin(suchasasmallgyroscope)isthatifitfallsfreelytmassivebody,suchasaKerrblackhole,itwillacquireagetoitsspinaxis.Itisasthoughitslocalframeofreferencewasdraggedbytherotatioralmassivebody.Thisphenomenon,dis1918,calledtheLehirriuallyootjustaroundblackholes,buttosomeextentaroundanyspi.Ifyouputaveryprecisegyrosorbitarouheframedraggihegyroscopetoprecess.
ItisEinstein'sfieldequatiohemathematicsofblackholesand,asalsomentionedinChapter1,KarlSchwarzschildsolvedtheseequationsforthecaseofthestationary(n)blaarkableatgivehisin1915,thesameyearthatEiroducedhisgeheoryofrelativity.ThecaseofthespinningblackholewastreatedmuchlaterbyNewZealanderRoyKerrin1965.Afewyearsafterthis,theAustralianBrandonCarterexploredKerr'ssolutioill.CartercarriedoutahiionintothecesoftheKerrmetric.Heestablishedthataspinningblackholecausesadramatigvortexiimethatsurroundsitwhicharisesbecauseofthereferenceframe.Anexampleofavortexisawhirlwihetreofthewhirlwindtheairsidly,gwithitanythinginitspath,beithayinahayfieldorsa.Furtherfromthewhirlwindtheair(andhencehayorsand)rotatesmuchmoreslowly.Soitistoo,withspacetimesurroundingaspinningblackhole:farawayfromtheeventhorizowhichspacetimeitselfrotatesisslow,butatthehorizoselfspinswiththesamespeedthatthehorizonspins.
&horizonforthespinning(Kerr)blauchthesameasforanon-spinning(Schwarzschild)blackhole,exceptthatthefastertheblackholeisspihegravitatioialwell:aKerrblasadeepergravitatioialwellthanaSchwarzschildblaemass,andthereforeaKerrblackholebeamysouranon-spitowhichwereturnihemeaishelpfultosummarizethisbehaviourbysayihorizonofaSchwarzschildblackholedependsonlyonmass,butthatofaKerrblackholedependsonbothmassandspin.
Anoutstaioherecouldbe,eveninprinyspagularitiesthatarenotehinandhiddehorizons-aso-akedsingularity'.Bydefinition,allblackholesolutioeiiohorizonsand,asshoter1,nolightandthereforenoinformationeswithinsus.Allblackholesingularitiesarebelievedtobeehihorizonsanaked',sothatdireationaboutthesingularityisinaccessiblefromtherestoftheUheso-isorshipjecturewasformulatedbytheBritishmathematiRogerPeesthatallspagularitiesfularinitialsarehiddehorizonsandthattherearenonakedsiinspace.
Howmuistoomuch?
Thereisalimittohowmugularmomentumablackholehave.Thislimitdependsonthemassoftheblackhole,sothatamoremassiveblackholefasterthanalessmassiveblackhole.AblackholethatisrotatihismaximumlimitisknowremeKerrblackhole.ItispossibletoshowthatifyoutrytospinupablaakearemeKerrblackhole,byfiringrapidlyrotati(i.e.givingitastir)therifugalfortthematterfromeveheeventhorizon.
&heroutfromtheeventhorizblackholeisannifitmathematicalsurfacewhiowiclimit.Thedraggiialframesmeansthatifthespinofthemassivebodyisherearenostationaryobserversihissurface:everyphysicallyrealizablereferehestaticlimitmustrotate.Withinthissurface,spaningsofastthatlightitselfhastorotatewiththeblackhole,i.e.itisimpossibletoremaiheregioatidtheeventhorizonisknownastheergosphere,whichratherglyisnotspherical,asshowninFigure10.Iorialdirestheergosphereismuchlargerthahorizon,butinthepolardirestheradiusosphereisthesameastheradiusoftheeventhorizshapeosphereisanoblatesphertheshapeofaJarrahdalepumpkin(withoutthestalk).Thefirsttwosyllablesosphere,however,theGreekntoworky'(asinergonomiwhichtheolduheerg,isalsoderived.Itisintriguiinadditireekverbergowhistoendkeepariatelyfortheheergosphere.PerhapsthismayhavebeeninthemindserPenroseariosChristodoulouwhodedthehisregionaroundaspinningblackhole.Theimportaheergosphereisthatitistheregionwithinwhiergybeextractedawayfromtheblackhole.
10.ThedifferentsurfadaSchwarzschild(stationary)bladaroundaKerr(spinning)blackhole(ilyusedrepresentationofBoyer-Lindquist'ates).
&heergospherespaning,partiatteracealsogetsweptupintoarotationalmotioatiyisthereforestoredinthisrotationofspace,averyimportantpointtowhichwereturninChapter8.
Whiteholesandwormholes
&eiioivityareparticularlyridallowmaialternativeversionsofcurvedspacetime.Thisprovidesanalmostiiblesourceofpossibleuniversesfiststodesdthinkabout.Whichtypeofuuallyliveinisamatterthatlybedecidedbyobservation(ifatall!).Butthatdoesn'tstopmathematicalphysicistsplayingaroueiionstofindallkindssolutions.
&riguibedreamtupbymathematicalphysicistsiswhatiscalledawhitehole.Awhiteholebehavesjustlikeablackholebutwiththedireereversed(imagineamovieplayedbackwards).Iterbeiisspewedout.Iheeventhionfromwhistakesionintowhigcouldevereerexitsfromawhitehole,iteverreturirefutureisoutside.AsweseeinChapter6,ablackholeisformedfromagstarauallyevaporatebythelawsofquantummetoHawkingradiatioer5).Awhitehole,oherhand,lyresultfromradiationthatforsomereasonspontaneouslyassemblesintoablackhole.ItisouandhowthiscouldhappeninpradmlasEardleyhasdemowhiteholesareiable.
&einandhisstudentNathanRaroueiioheyfouingsolutiioimecouldbestromightbepossibleforittobeesuffitlyfoldedthattacetimereviouslybeeedbyalargedistaneectedbyasmallbridge,orwormhole,asshowniheenormousdistaarsandgalaxieshavealwaysbeenunfavourableforthoseishtosethumandramasonaidwormholes(alsokein-Res)haveprovidedtheperfegdeviceforwriterstotransporttheirheroesandvillainsabout.Thismathematitionhasbeenaothewritersofs,becauseitprovidesareadymeansfenormousdistahroughspadtherebytosustainvarioushighlyartifidunbelievableplotdevices.Yetagain,wehaveiowormholesactuallyexistinourUniverse.Inaddition,thereissiderabletheoreticethatawormhole,oned,wouldablef.Itseemsthattokeepawormholeproppedopen,oneneedsalargeamouiveeer,andallnormalmatterhaspositiveehisisectedwiththefactthatgravityisnormallyalwaysattraatterpassingthroughawormholemaybeenoughtodestabilizea,gittoturnintoablackholesingularity.
11.Awormholegtwootherwiseseparateregioime.
Ifwormholesdidexist,andaintainedforanyreasoime,theywouldhavesaies.Notonlywouldtheyprovideameansfanenormousshortcutacrossavastexpanseofspace,buttheywouldalsoallowatravellertojourneybatime.Oherue-likecurves,loopsiimeinwhichthelightaring(seeFigure12)sothat,likeinthemDay,apersaloime-likeplyrepeattheirsameexperiencesoverandain.
Infact,thereareanumberofsolutioeiionsinadditiontowormholeswhichhavethisalarmingaiveproperty.In1949,themathematiKurtG?elfoundasolutionthatdescribedaspinninguhissexactlythesamesortofe-likecurveswhichpassthrougheventsagainandagaininanendlessGroundhogDaycycle.(Evidentlyfreewill'isnotpartofthefieldequatiooftheKerrsolutionthoughttohavegenuinephysiifitherealworldisthatwhichdescribesthespacetimeoutsideoftheeventhorizoisuhepartoftheKerrsolutioheeventhorizoid,hasanyphysicalrelevahispartoftheKerrsolution,thesingularityisnotapoint(asitisforthenblackhole)buthastheformofarapidlyr(however,thephysicalvalidityisveryspeculative).Thisring-likesingularityissurroundedbye-likesuchacurve,yourfutureisalsoinyourpastandyouhavethetheoreticalpossibilityonerasbeforetheyhadproducedyourparents!Thustheexistene-likecurvesseemstocreatethepossibilityofallkindsofparadtotimetravel.Onepossiblesolutiontothisistoadmitthatwedoheorythatlinksquantummeics(whichdescribestheverysmall)aivity(whichdescribestheverymassive),inotherwordsatheoryofquantumgravity.Wedon'tknowthephysielymassivebutverysmallobjects.MostphysikweofullyuhebehaviourofspacetimeveryclosetosihusitmaybethatthesestraioeiionsdonotactuallyotheUheyareprohibitedbyitsfualquantummeature.Quasmay,forexample,destabilizewormholes.StephenHawkiobethedhascalledthispriheologyProtejecture'.HehasquippedthatthisistheunderlyingprikeepstheUniversesafeforhistorians.
12.Ae-likeloop,onwhichyourfuturebeesyourpast.
Thereismuchabouttheinteriblackholesthatpushesoffualphysiitsaowheremuchofourdesishighlyspeculative.Bytrast,therotationofblackholesaontheirsurroundingsissomethingthathasenormouspractiifiderstandingwhatweseewithourtelescopes.Thusourosiderihappenstomatterwhenitfallsintoablackhole.
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!