天才一秒记住【热天中文网】地址:https://www.rtzw.net
Chapter8Quantumlight
banner"
>
InChapter1,Iiheideathatlightcouldbestruedasastreamofparticles,hotons’forsoutthatthesearerealparticles,roduced,playedwith,measured,stored,andusedfthings.However,eventhoughphotonsareihesimplestexpressionoflight,makingindividualphotonsisnotsosimple.Mostlightseofadifferentkind,forwhiumberofphotonsisnotfixed.
Alightbulb,forinstance,producesastreamofphotonsthatsprayseverywhere.Ifyoulookedatthelightgoingiionfromthebulb,andtheashorttemporalseofthebeam—atimeslot,ifyoulike—theoephotonsinthatslot.Butifyourepeatedtheexperimeimes,you’dfindthattheonswasraimeslargeaimessmall.Theaverageonswouldbefixed,dependihebulb,butyou’dosaywithtyhohotonsyouwouldmeasureiagive’soeristicsof‘classicallight’—lightthatbedestirelyintermsof>
&isalsoofthiskind.Theaverageonsinapulsehtbelarge,butfiveualonswillbebiggerorsmallerthahespreadofphotonnumbersinapulseisapproximatelythesquarerootoftheaveragehattherelative‘ionintheonsineachpulseparedtothemeannumberoverallpulses—getssmallerthehighertheaverageons.
Thusalaserbeamhasintriyhissetsalimitoyofimagesyougetwithlaserillumiionsiedetegtheseparationoftwopointsinanimageisimprefactitisveryimpreciseforlow-iylight,wherethemeanphotonnumberissmall(sotheobjectishardtosee)aioninphotonnumberfromframetoframeislarge.Theonlywaytogetprecisemeasurementsister,thusiheonsillumi,aheresultsovermanylaserpulses.Therelativeiynoiseisreducedbythissignalaveragioabetter-resolvedimage.Thepreproportiontothesquarerootoftheohisiscalledthe‘standardquantumlimit’,sinoclassicallightbeambeatit.
Quantumlight,oherhand,allowsyoutoachievemuchbetterresultsinsignalaveragingforthesameaverageoumlighthavemuoisethananyclassicallight.Butfirst,youhavetobuildaquantumlightsource.Therearemanykindsofsuchasource,eachprodugadistinlight.Butwemightsider,tobecrete,aseheprimitivequa—aphoton.
Sions
Sohowakejustasingle,individualphoton?There’saverypracticalsveoFris1965.Hisideale.Takeasiomandputitiate(see
Chapter5foradisofhowtodothis).Thenwaitforittodroptoitsgroudoes,itemitsjustoon,sine‘quantum’ybestoredioYoutellwheomhasemittedthephotorethe‘kick’providedbythephotouIfyoudeteoving,youdetermihatthesionisonitswayaioninwhichitisgoing.
Somemodernquantumlightsourcesoperateinasimilarwaytothis,onlytheycorraltheatombetweentwomirrors(anoptical‘cavity’similartothatofalaser),averyquicklysothatitemitspreferentiallyiiohecavityaxis.Thismakesareliablesourglephotons.Itisanespecially‘lownoise’sourcethephotoedwithstrictregularity.Ifyoulookedatagiveinsuchabeam,you’dbeabletopredictwithtyhohotonswouldbeinit—justoheiyisexallystable—itisa‘quiet’lightbeam,intrasttothe‘noisy’classie.
Theideaisalsousediumlightsourparticular,youstructaverysimplelightsicaleffects.Specifically,therearecrystalsthatephotonwithhigheobesplitintotwophotonswithly,eachabouthalfinalinputphoton.Theprobabilitythatthisfissiontakesplaceisrathersmall,formostmaterials.Butsionsareprodupairs,youeasa‘herald’,tosignalthepreseher(Figure34).Suchlightsourcesaretheworkhorseofthefieldofquantumoptics,whichusesthequantummeicalfeaturesoflighttoexplorethefoundationsofquantumphysics,aswellastoenablenewkindsofinformationteologies.
Justasclassicaleleagicolarized,sos.Sowemightfiicallypolarized(V)photonorahorizontallypolarized(H)photon.Thesewouldbehavejustlikewaves,inthatifwemeasuredthepolarizatioopassedthroughapolarizerorientedhorizontally,thehattheH-photonalassedthroughaonnever.
34.A‘heralded’sionlightseingphotonsrandomly,butwithasignalthatindionehasbeenprepared.
What’sstrawestructadiagonallypolarizedphoton,osgwiththefieldat45degreestoboththehorizontalaical.Butifwenowtrytoseeifthephotohroughthehorizontalpolarizer,thenthereisanambiguity.Thephoto‘piece’oflight,so’tbedividedfurther.Howshoulditbehaveatthepolarizer?ensisthatitistrahaprobabilityofone-half,ahequalprobability(illustratedinFigure35).
Ihatimpliesisthatifyoutrytheexperimentofputtingadiagonallypolarized(D)sionintoahorizontallyorientedpolarizeramilliohen500,000timesitwillgh.Arahingaboutquantummeicsisthatyouottellorialwhaten.ThisishephotonsideredsometimestobeH-polarizedaimesV-polarized.RatheritisbecausethephotonisbothHandV-polarized,simultaherandomouteasuremeon’spolarizationthereforerevealtheintrihatinhabitsthemostfualleveloftheuniverseasdescribedbyquantumphysics.
35.Adiagonallypolarizedphotoersapolarizer,asrandhoortheother.
Ofakeavirtueoutofyinsuchces.Youdopractigswithsionsthatareunimagihht.Forihispropertyofphotoogeerandomnumbers,bymeasurihephotonistransmitted(labellie,say,1)orreflected(labelled0).Therahestringofzeroesandonesisiheunderlyingphysiotjustiureandgofdice,ehisreasonquantumraorsareanemergingbusiness—you’tfaketheraheyprovide.
Aseple:youmakeunislinksforwhichthesecurityisguarahelawsofphysics,ratherthanbytrustingyourtelessupplier.Thisisbeportaiesofphotons.First,youotdetetwoplace.Forthatreason,ifaneavesdrrabsthephotontocapturetheinformati,thenofcourseyoudohephoton.Soyoureation,ahatsomething’swrong.
Butiftheeavesdropperisclever,shewillseonthatshehopeswillfakethemessage.Butyoutellthatit’safake!Thereasonyouowthisisthatinquahereistellyaboutasiumparticle.
siderthefollowingsario.Youwanttosendasimplebinarymessage(0sahislink,sayaverticallypolarizedphotonfor0andadiagonallypolarizedphotonfor1.Iftheeavesdropper(usuallyknownasEve)measuresthephotoheaicallypolarized’,sheotbethatthephotonwasa0,sihediagonallypolarizedphotonwouldgiveherthesamealeasthalfthetime.Soshegetssomeinformation,buthing.
hesehemessage(allycalledAlice—you,thereceiver,areBob)sendsyouaphotoncodedas1.Let’ssayEvemeasuresthisiitatiosapositiveresult.Shemustchoosewhethertosendyouaverticallyonallypolarizedphotoegyistosendyouaverticallypolarizedphotohemostlikelysourceofherresult.hediagonalpolarization.IfyourphotonisfromEve,itwillgiveyresult50pere.IfitisfromAlice,youwillhewro.SobypariionofthereceivedmessagewithwhatAlit,youtellifEveistamperingwithyourline.
Hhtbeevencleverer.ShemaytrytocopythephotonfromAlieasuringit.Sheaketwofagyinal.Thenshemakeaverticalpolarizatioononedadiagonalpolarizatiohesedshewouldhavedetermihefullinformationaboutthephoton‘bit’thatAlityouwithouty.However,shewouldbethwarted.Aremarkablefeatureofquantummeicsisthatthereisnopossibilityofbuildingaaethatakeareplica,ore,ofasiiunknownquaissimplyforbiddenbythelawsofphysics.Becauseofthesetosedbyphysient’and‘nog’—itispossibletobuildaseunislinkthatsmitasecretstreamofrandombitsbetweenAlidyou.
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!