天才一秒记住【热天中文网】地址:https://www.rtzw.net
这些说法反映了人工智能学科的基本思想和基本内容。
即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。
也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。
这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。
人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。
可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
例如繁重的科学和工程计算本来是要人脑来承担的,计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”
,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。
它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。
通常,“机器学习”
的数学基础是“统计学”
、“信息论”
和“控制论”
。
还包括其他非数学学科。
这类“机器学习”
对“经验”
的依赖性很强。
计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。
我们可以将这样的学习方式称之为“连续型学习”
。
但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”
。
这在某些情形下被称为“灵感”
或“顿悟”
。
一直以来,计算机最难学会的就是“顿悟”
。
或者再严格一些来说,计算机在学习和“实践”
方面难以学会“不依赖于量变的质变”
,很难从一种“质”
直接到另一种“质”
,或者从一个“概念”
直接到另一个“概念”
。
正因为如此,这里的“实践”
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!